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ABSTRACT

Bayesian methods of inference are the appropriate statistical tools for
providing interval estimates in practice. The example presented here
illustrates the relative ease with which Bayesian models can be implemented
using simulation techniques to approximate posterior distributions but also
shows that these techniques cannot be automatically applied to arrive at sound
inferences. In particular, the example dramatizes three 'important messages.
The first two messages are concrete and easily stated:

(1) Although the log normal model is often used to estimate the total on
the raw scale (e.g., estimate total oil reserves assuming the logarithm of the
values are normally distributed), the log normal model may not provide
realistic inferences even when it appears to fit fairly well as judged from
probability plots.

(2) Extending the log normal family to a larger family, such as the Box-
Cox family of power transformations, and selecting a better fitting model by
likelihood criteria or probability plots, may lead to less realistic
inferences for the population total, even when probability plots indicate an
adequate fit.

The third message is more philosophical, is not easy to state precisely, but
is well-illustrated by the example.

(3) In general, inferences are sensitive to features of the underlying
distribution of values in the population that cannot be addressed by the
data. Consequently, for good statistical answers we need: (a) models that
allow observed data to dominate prior restrictions, and either (b) flexibility
in these models to allow specification of realistic underlying features of
population values not adequately addressed by observed values, or (c)
questions that are robust for the type of data collected in the sense that all
relevant underlying features of population values are adequately addressed by
the observed data.

AmS (MOS) Subject Classifications: 6207, 62A15, 62D05, 62E25, 62F15

Key Words: sample surveys, Box-Cox transformations, simulation, sensitivity

Work Unit Number 4 (Statistics and Probability)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

-1-



A CASE STUDY OF THE ROBUSTNESS OF BAYESIAN METHODS
OF INFERENCE: ESTIMATING THE TOTAL IN A FINITE
POPULATION USING TRANSFORMATIONS TO NORMALITY

Donald B. Rubin

1. PROLOGUE-THE PRACTICAL INTERPRETATION OF INTERVAL

ESTIMATES AS BAYES INTERVALS

Bayesian methods of inference will be, I believe, the

primary statistical tools used to analyze data in the

future, at least in those cases in which the purpose of

statistical analysis is to provide a range of likely values

for an unknown quantity, such as the total in a finite

population or the relative effect of a treatment in an

experiment. One reason for this belief is the inherent

flexibility of Bayesian models with their multiple levels

of randomness; such methods naturally lead to smoothed

estimates in complicated data structures and consequently

possess the ability to obtain better real world answers.

Another reason for this belief that Bayesian methods

will constitute the standard tools for providing interval

estimates is more psychological, and involves the

relationship between the statistician and the client who is

the consuimer of the statistician's work. In nearly all

practical cases, clients will interpret intervals provided

by statisticians as Bayesian intervals, that is, as

probability statements about the likely values of unknown

quantities conditional on the evidence in the data. Such

direct probability statements require prior probability

specifications for unknown quantities, and thus the kinds of

answers clients will assume are being provided by

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041.!Now



statisticians, Bayesian answers, require prior probabil~ty

assumptions. If the Bayesian answers vary dramatically for

different reasonable assumptions unassailable by the data,

then the resultant range ot bayesian answers must be

entertained as legitimate, and I believe that the

statistician has the responsibility to make the client aware

of this fact.

Of course, there are assumptionless confidence inter-

vals, but these are not generally useful inferentially. For

an extreme example, consider the following 95% confidence

interval: regardless of the values of the data, 95% of the

time the interval is (-,') and 5% of the time the

interval is [0,0]. Confidence intervals are generally

useful and fair summaries of data only when they can be

interpreted as approximate (or, in some circumstances,

conservative) Bayesian intervals.

In brief, interval estimates will be interpreted by

clients as Bayesian (or approximately Bayesian) intervals

and therefore statisticians have an obligation to try to

provide interval estimates that can legitimately be

interpreted as such, or at least to offer guidance as to

when the intervals that are provided can be safely

interpreted in this manner.

2. THE ROBUSTNESS OF BAYESIAN METHODS

The potential application of statistical methods is

often demonstrated either (a) theoretically, (b) from

artificial data generated following some convenient analytic

form, or (c) from real data without a known correct

answer. But quite generally, we understand tools through

the consequences of their application, and these three kinds

of demonstrations, although useful, provide somewhat limited

evidence on how well the tools can be expected to work in

practice. The case study presented here uses a small, real

data set with a known value for the quantity to be

estimated. It is surprising and instructive to see the care

that may be needed to arrive at satisfactory inferences with

real data.

! _-2-
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The specific example concerns the estimation of the
total population of the N = 804 municipalities in New York

State from a simple random sample of n = 100 (source =

Encyclopedia Britannica, 1960 census; New York City was

represented by its five boroughs). Table 1 presents summary

statistics for this population and two simple random

samples. These two samples were the first and only ones

chosen. With knowledge of the population, neither sample

appears particularly atypical; sample I is very represen-

tative of the population, whereas sample 2 has a few too

many large values. Consequently, it might at first glance

seem straightforward to estimate the population total,

perhaps overestimating the total from the second sample.

This example was originally studied to demonstrate the

relative ease with which Bayesian models could be fit to

such data using simulation techniques to approximate

posterior distributions, and the example does illustrate

this point. It does not, however, generate the message that

these techniques can be automatically applied to arrive at

sound inferences. Rather, it dramatizes three important

messages.

The first two messages are concrete and address the

accuracy of resultant inferences for covering the true

population total.

(1) Although the log normal model is often used to

estimate the total on the raw scale (e.g., estimate total

pollutant, medical costs or oil reserves assuming the

logarithm of the values are normally distributed), the log

normal model may not provide accurate inferences for the

total even when it appears to fit fairly well as judged from

probability plots.

(2) Extending the log normal family to a larger

family, such as the Box-Cox family of power transformations,

and selecting a better fitting model by Bayesian/likelihood

criteria or probability plots may lead to less realistic

inferences for the population total, even when probability

plots indicate an aaequate fit.

-3-
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These two points are not criticisms of the log trans-
formation or the Box-Cox family of power transformations.

Rather, they are warnings about the naive statement "better

fits to data mean better models which in turn mean better
real world answers". Statistical answers rely on prior

assumptions as well as data, and better real world answers

generally require models that incorporate more realistic

prior assumptions as well as provide better fits to data.

This comment naturally leads to the last message of this
paper, which is a general one encompassing the first two.

(3) In general, inferences are sensitive to features
of the underlying distribution of values in the population

that cannot be addressed by the observed data.

Consequently, for good statistical answers we need
(a) models that allow observed data to dominate

prior restrictions,

and either

(b) flexibility in these models to allow

specification of realistic underlying features of

population values not adequately addressed by
observed values, such as behavior in the extreme

tails of the distribution,

or

(c) questions that are robust for the type of
data collected in the sense that all relevant

underlying features of population values are
adequately addressed by the observed values.

Finding models that satisfy 3a and 3b is a more general

approach than finding questions that satisfy 3c because

statisticians are often presented with hard questions that
require answers of some sort, and do not have the luxury of
posing easy (i.e. robust) questions in their place. For

example, for environmental reasons it may be important to

estimate the total amount of pollutant being emitted by a
manufacturing plant using samples of the soil from the

surrounding geographical area, or, for purposes of budgeting
a health-care insurance program, it may be necessary to

- ----. -- --



estimate the total amount of medical expenses from a sample

of patients. Such questions are inherently nonrobust in

that their answers depend on the behavior in the extreme

tails of the underlying distributions. Estimating more

robust population characteristics, such as the median amount

of pollutant in soil samples or the median medical expense

for patients, does not address the essential questions in

such examples.

At least from a Bayesian perspective, the more major

effort in statistics currently seems to be focused on 3c

rather than on 3a and 3b, that is on defining the estimand

to be the midmean or the population analogue of some other

robust estimator of location. Although such work is

obviously important, it seems somewhat surprising that less

effort is being devoted to the development of
computationally attractive tools that are capable of

addressing both easy and hard questions, especially since

the current collection of statistical tools satisfying both

criteria 3a and 3b seems to be rather limited.

This third point is not a criticism of any particular

tool for inference, but it is a criticism of the claim that
inferential tools, such as the jackknife (c.f. Miller, 1974)

or bootstrap (Efron, 1980, Rubin, 1981) can be assumption
free. We need to define conditions (i.e., prior assump-
tions, data, and questions) under which a particular

statistical tool works well and those conditions under which
it does not. Moreover, we must cautiously interpret state-
ments like "normal looking samples automatically provide

robust estimates of location" and "if it can't be estimated
well, it won't affect inferences" as well as "if the data do

not contradict the model, the model is satisfactory for

drawing inferences*. All statements are true under

particular conditions but generally are false: in general,
inferences depend on assumptions that the data at hand

cannot address. Robustness of Bayesian inference is a joint
property of data, prior knowledge, and questions under

.___
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consideration; the remainder of this article illustrates

this general point in our example.

3. SAMPLE 1 -- INITIAL ANALYSIS

We begin the data analysis by trying to estimate the

population total from Sample 1. The standard 95% interval

for the finite population total is:

1  1 (1)N~i SN n N"

For our problem N = 804, n = 100, and for Sample 1, the

sample mean, y, equals 19,667 and the sample standard

deviation, s, equals 142,218. Hence, the observed value

of interval (1) is approximately

(-5.6 x 106, 37.2 x 106) . (2)

Interval (2) can be justified under certain assumptions

as a 95% interval from either the randomization theory

perspective (c.f. Cochran, 1963) or the Bayesian perspective

(c.f. Ericson, 1969; Rubin, 1978). From either perspective,

the required assumptions are not well supported with a skew

sample like Sample 1, but are supported with approximately

normally distributed samples.

The practical man examining the standard 95% interval

(2) might find the upper limit useful and simply replace the

lower limit by the total in this sample, since the total in

the population can be no less; this procedure would give a

95% interval estimate of (2 x 106, 37 x 106) for the

population total. We note that this does cover the true

population total, 14 x 106.

Surely, modestly intelligent use of statistical models

should produce a better answer because from Table 1, both

the population and Sample 1 are very far from normal, and

the standard interval is most appropriate with normal

populations. Even before seeing any data, we know that

sizes of municipalities are far more likely to look some-

thing like log normal than normal. Figures 1 and 2 show
normal and log-normal probability plots for Sample 1.

-7-
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Although the data do not appear to be exactly log normal

(primarily because of one extreme value), they do appear to

be so much closer to log normal than normal that an

inference based on the log normal model should be superior

to the standard inference, and thereby demonstrate that

inferences based on more plausible models can easily

dominate the standard inference.

Let Yip i = l,...,804 be the sizes of the 804

municipalities in New York State, and let Z. = log(Yi).

Suppose the 804 values appear like an i.i.d. (independent

and identically distributed) sample from a log normal

distribution with mean V and variance v2:

i.i.d. N(p,o 2 ) i = i,...,804

Based on a random sample of 100 values of Zi, we can
easily obtain the joint posterior distribution of (P,*)

corresponding to prior distribution p(M, 2 ). Given this

posterior distribution, we can find the posterior predictive

distribution of the 704 unsampled values of Zi  in the

population, and thus the posterior predictive distribution

of the 704 unsampled Yi, and hence the posterior
804

predictive distribution of Y+ = i. (We use the
1

adjective "predictive" to emphasize the distribution of an

observable quantity and the adjective "posterior" to mean

conditionally given data and model specifications. Since
the observable/unobservable distinction is usually obvious

from context, we will henceforth drop the adjective
"predictive").

Although this procedure is conceptually straight-

forward, because of the log transformation, the posterior

distribution for Y+ cannot be written in simple closed

form. Consequently, we will approximate the posterior

distribution of Y+ using simple simulation techniques.

The Appendix outlines the simulation procedure. With prior
distribution p(p,a2) a 0-, the posterior distribution of

2 i -24 p given a is N(Z,e 2) and the posterior distribution

-10-
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of a2  is s2 times an inverted X2 on 99 d.f. Conse-
Z 2

quently, it is easy to draw (', 2 ) from its posterior

distribution. Having drawn values of p and a2, say Ii,
2and a*, it is easy to draw 804 values from the posterior

distribution of Zi, i = 1,804, given j = , and
2 2 vlea . 0*: values of Zi  that are in the sample are fixed

at their observed values and the 704 unsampled values of
2Zi are drawn as i.i.d. N(h1*,O). Summing the 100 observed

values of Y= exp(Zi) and the 704 drawn values of

Yi = exp(Zi) gives one value of Y+ drawn from its

posterior distribution. Note that any other feature of the

population, such as the 95th percentile, can be calculated

at this time. Drawing a second value of (p,a 2 and

repeating the process yields a second value of Y+.

We drew 100 values of Y+ which are displayed in Stem-

and-Leaf 1. based on these 100 simulated values, we find

that the posterior median of Y+ is approximately

6.9 x 106, and the 95% interval based on the third and

97th of the 100 drawn values is (5.4 x 106, 9.9 x 10 6).

Although this interval is much narrower than the standard

interval and at first glance its limits seem sensible, the

interval fails to include the true Y+, 13.8 x 106!

Further, from Stem-and-Leaf 1, even the 99% interval based

on all 100 simulated values of Y+, (5.2 x 106,

11.8 x 106), excludes the true value of Y+ by a large

amount as well as the estimate based on the sample mean,

N x y = 15.8 x 106. Of particular importance, this failure

to include the population total occurs with a sample that

from Table 1 appears quite representative of the popula-

tion. For this sample, the inference for Y+ based on the

log normal specification is, at least for the practical man

with hindsight, worse than the simple standard inference

for Y+.

A re-examination of Figure 2 suggests one possible

reason for our excluding the right answer when using the log

4normal specification: although log(Y i ) is substantially

more normal than Yi, the 100 values of log(Y i ) are

-11-



STE-and-LEAF 1: The posterior predictive distribution

of in Sample 1 based on a normal model for log(Y£);

100 simulated values in units of 106•

5. 124455778888999

6. 0000011122222223334455666677777788888999

7. 000011123344445557778899

8. 0112233555667

9. 01234

10. 3

11. 38

STE*-and-LEAF 2: The posterior predictive distribution

of Y+ in Sample 1 based on a normal model for Y-1/8;

100 simulated values in units of 106.

5. 56899

6. 023335566668999

7. 0011236789

8. 022334555888889

9. 33455668999

10. 01123444466

11. 002356

12. 347

13. 457899

14. 26

15. 77

16. 23

17. 223

18. 0

High values 21.3, 21.1, 26.0, 27.1, 30.1, 31.8, 32.5, 53.5

-12-



still not really normally distributed. In particular, a

straight line in the log transformation probability plot

goes well below the largest observed value. As a conse-

quence, values like the largest observed value will be

generated less often by the log normal model than once in

one-hundred, with the result that the total as estimated

under the log normal specification will be relatively

small. Perhaps another transformation that produced

straighter probability plots would have led to better

results.

Before considering other transformations, we note that

the example illustrates the first point mentioned in the

Section 2. Although the log normal seems to fit the data

fairly well in a global sense as judged by the probability

plot, the inference for the total seriously underestimates

the actual total. Such behavior is not desirable when

trying to estimate total amounts of pollutant, radiation,

medical expenses or oil reserves, all examples which at

times are handled by log normal specifications.

4. SAMPLE 1 -- EXTENDED ANALYSES

Box and Cox (1964) suggest that the following family of

power transformations indexed by I can be useful in

Bayesian and likelihood data analyses:

Yt if A 0

zi =
log(Y i) if X = 0

where the Zi are then assumed to be i.i.d. N(Po 2 ). With

a particular choice of noninformative prior distribution on

(A,j,a 2), the posterior distribution of A is

proportional to

VarlZ.)-n-l)/2

where

1 __ -13-
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Z*
= € l)/(y ) if A , 0

log(Y i) if A= 0

y= geometric mean Yi

and Var(Z,) = I (Z~i - T,)/(n - 1).

Table 2 presents values of Var(Z*) for twelve values

of A. Quite clearly, A - -1/8 or even A = -1/4 gives a

substantially better fit to normality in Sample 1 than

A = 0. Figure 3 gives the normal probability plot of the

sample values, yT1/8. Although it is not a straight line,

the plot does seem somewhat straighter than the correspond-

ing one for log(Yi).

The same technique used to simulate the posterior

distribution of Y+ when Zi = log(Y i) was assumed normal,

was used to simulate the posterior distribution of Y when

zi = i was assumed normal: simply let Z. =-t/8

instead of log(yi) and let a Zi8 instead of

exp(Zi). One problem that has to be addressed in principle,

and possibly in practice, is that negative values of Zi
are possible because Zi  is assumed to be normally

distributed, and negative Zi values do not map properly

into Yi values. Formally, we will assume that Zi  is

distributed as a truncated normal; thus, if a negative value

of Zi  is generated, we will draw a new Zi value; the

Appendix provides details.
Based on the 100 simulated values displayed in Stem-

and-Leaf 2, the posterior median of Y+ is 9.6 x 106, and

the 95% interval based on the 3rd and 97th values is

(5.8 x 106, 31.8 x 106). Note that the interval includes
the true value, that the upper limit is similar to the upper

limit of the standard interval but that the lower limit is

closer to the true value.
Perhaps we have learned how to.successfully apply

likelihood/Bayesian methods with such data - use the Box-Cox

family of power transformations as the basic model with

-14-



TABLE 2: Fit of Power Family:

Var(Z*) x107

Power Sample-1 Sample 2

1 2022.57 5226.94

1/2 14.06 30.84

1/4 2.58 4.55

1/8 1.59 2.43

1/i6 1.37 1.95

1/32 1.29 1.78

log 1.23 1.65

-1/32 1.18 1.55

-1/16 1.15 1.48

-1/8 1.11 1.37

-1/4 1.13 1.32

-1/2 1.47 1.64

*I(y imx A1 IO where

log~y) X-0 geometric mean (y) .

'With noninformative prior, posterior propor-

tional to VrZ)-nl/

A~



FULL-60mPAI. PLOT

St I

I I

2 I

e.40 t23

I ta

* 22

I litU t

I 9 9 0 2*9 89 Ia60 01 93 6. 34 Ie la 99

a iur 3:e NomlPoY-/ ape

I 2 £-

o.~V6o MOR-



simulation techniques as the computational tool. But we did

not conduct a very rigorous test of this conjecture. We

started with the log transformation and obtained an infer-
ence that looked respectable but excluded the true value, a

fact never known in practice; we then enlarged the family of
transformations and found the best fitting transformation.

This extended procedure seemed to work in the sense that the
resultant 95% interval was plausible and covered the true

value. To check on this extended procedure, we will try it
on a second random sample of 100. This second sample was

the only other one selected.

5. SAMPLE 2

The second sample of 100 cities and towns is summarized
in Table 1. The standard inference for the population total

from this sample is that (-3.4 x 106 x 65.3 x 106) is a

95% interval. Substituting the sample total for the lower

limit gives (3.9 x 106, 65.3 x 106), a large interval
which includes the true value.

The Sample 2 data were first modelled as log normal,
and 100 values were drawn from the posterior distribution of
the total. The resultant posterior median is 10.6 x 106,

and the 95% interval based on the third and 97th simulated
values is (8.2 x 106, 19.6 x 106); the 99% interval

based on the lowest and highest simulated values is

(8.1 X 106, 25.3 x 106). The log normal inference is quite
tight and covers the true value, although not the estimate

based on the sample mean, Ny ; 31 x 106 . If we had drawn

Sample 2 first, we might have concluded that the log normal
model for this population was perfectly satisfactory. But

based upon our experience with Sample 1, we should not trust
the log normal interval and instead should consider the

power family. Figure 4 shows that the log normal does not

provide an entirely satisfactory fit to Sample 2 just as it

did not to Sample 1. In fact, judging from the normal

plots, the log normal fits more poorly in Sample 2 than in

Sample 1 even though with pragmatic hindsight, the 95%

-17-
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interval for Y+ in Sample 2 is more satisfactory than the

95% interval for Y+ in Sample 1.

Values of Var(Z,) for sample 2 are given .in Table 2.

As with sample 1, the log is not the best transformation;

now, I = -1/4 is best, slightly better than A = -1/8.

Figures 5 and 6 show the normal probability plots for

Zi = y I/4 a n d Z  .i = y I/8 respectively for sample 2;

both transformations appear better than the log

transformation.

Even though the sampled values of Y-1/4 appear to be

rather normal, the inferences for the population total

resulting from assuming that Z = 1/4 follow a truncated

normal distriouted are, with pragmatic hindsight, atrocious:

all 100 gener.--ed i,-31ies of Y+ are larger than the true

value of Y+ ,'nd most of them are much larger. In fact,

the resulting 1I draws from the posterior distribution

for Y+ is so long-tailed that it is not well-summarized

by a sten-ant.i-leaf display: the minimum value generated is

14.1 x 106, the third lowest is 18 x 106, the median

is 57 x 107, the 97th value is 14 x 1015 and the largest

value generated is 12 x 10171 The best value for X

yields entirely unsatisfactory inferences for Y+: the 99%

interval is extremely large and excludes the correct answer.

The inferences that result from using I = -1/8 are,

from a practical point of view, substantially better

although still not very satisfying: the posterior median is
1615.7 x 10 and the 95% interval based on the third and

97th values is (8 x 106, 200 x 106). Although in Sample 2

both Y-1 /8 and Y-1/4 are better transformations to

normality than log(Yi), at least judging by likelihood

criteria and probability plots, the inferences for Y+

under these models are far worse than the inferences for

Y+ under the log normal model, at least to the practical

man who wants a tight interval that covers the true value.

These results illustrate the second point in Section 2.

'II
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6. NEED TO SPECIFY CRITICAL PRIOR INFORMATION

What's going on? How can the inferences for the
population total in Sample 2 be so much less realistic with

better fitting models (e.g., with Y118 and Y1/4
3. i

distributed normally) than with worse fitting models (e.g.,
with log(Y i ) distributed normally)?

The problem with these inferences in this example is
not an inability of the models to fit the data. A larger

family of transformations to normality that could further

straighten the normal probability plot is not what is
needed. In fact, all monotone transformations that map the

ith order statistic Y(i) into v + a#-l for
and a yield essentially straight normal plots and

identical likelihoods, yet these transformations can lead to

drastically different inferences for Y+ depending on their

shape for values of Y between the order statistics and
especially for values of Y greater than the largest order

statistic, Y(n)" There exists an infinity of such
transformations and none can be contradicted by or selected

by probability plots or likelihood criteria alone. The
problem is that the question we are asking, "What is the

total, Y+, in the population?w, does not have a stable
answer from a simple random sample without information

external to the observed data about the right tail of the
distribution of sizes of municipalities. As we fit models

like the power family, the right tail of these models,
(especially beyond the upper 1/2 percentage point), is being

wagged uncontrollably by the fit of the model to the body of
the data (between the lower and upper 1/2 percentage

points); behavior of the models in the extreme tails is not

being addressed by the relative likelihoods of the models

(or by the corresponding probability plots) because there

are no data in the extreme tails. Yet the inference for

Y+ is critically dependent upon tail behavior beyond the
percentile corresponding to the largest observed Yi. In

order to estimate the total, not only do we need a model
that provides a reasonable fit to the observed data, we also
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need a model that provides realistic extrapolations beyond

the region of the data. For such extrapolations, we must

rely on prior assumptions, such as specification of the

largest possible size of a municipality.

More explicitly, for our two samples, the three

parameters of the power family, A, U, a2, are basically

enough to provide a reasonable fit to the observed data;

S= -1/8 in Sample 1 and A = -1/4 in Sample 2 pretty

much generate straight probability plots. But in order to

obtain realistic inferences for the population of New York

State from both samples, we need to constrain the

distribution of large municipalities. Suppose that a priori

we know that no city has population greater than 5 x 106.

Then using the simulation techniques described in the

Appendix, we can draw values from the posterior distribution

of size of municipality truncated at 5 x 106. Stem-and-

Leafs 3 and 4 display the resultant posterior distributions

of Y+ from Samples 1 and 2 using the best fitting power

for each (A = -1/8 and A = -1/4 respectively) and
x16truncating the size of municipality at 5 x 10. Although

this method of providing prior information may seem somewhat

clumsy, these Stem-and-Leaf displays yield quite reasonable

inferences for the total population size; in both samples,

the inferences for Y+ are tighter than with the

untruncated models and in Sample 2, the inference is

realistic. In both samples, the 95% intervals cover the

true value: the interval in Sample 1 is (6 x 106,

20 x 106) and the interval in Sample 2 is

(10 x 106, 34 x 106).

The point is simple, and was stated in Section 2: if

we ask a question and wish good statistical answers from the

data at hand, we must in general provide models that (a) are

flexible enough to let the data fit features it can (e.g.,

the power family of transformations to normality is nearly

flex ible enough to generate straight probability plots for

our data), and (b) impose prior constraints on critical

features of the underlying distribution that the data cannot
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STEM-and-LEAF 3: The posterior predictive distribution
of Y in Sample 1 based on a truncated normal model for
Y:i I / ' Yi < 5 x 106; 100 simulated values in units of 106.

5. 56899

6. 0233355666678999
7. 0011234567789
8. 0022233445556888889

9. 33455668999

10. 011123444466
11. 0012356

12. 34
13. 24789

14.

15. 78

16. 24

17. 122

High values: 20.0, 24.8, 26.0

STEM-and-LEAF 4: The posterior predictive distribution
of Y+ in Sample 2 based on a truncated normal model for

I / 49 Y < 5 x 106 ; 100 simulated values in units of 10 7 .

0. 88

1. 011

1. 2222223333333

1. 4444555555

1. 6666777777

1. '88888999999

2. 0000011111

2. 223333333333

2. 444444444445

2. 666777

2. 8

3. 000011

3. 3

3. 45

3.

.3. 8
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address (e.g., restrict all municipality sizes to be less

than 5 x 106).

7. GOOD FITS AND SPECIFIED EXTREME VALUES ARE NOT ENOUGH

WITH SUCH DATA

The results in the previous section might be seen as

suggesting that in order to estimate the population total

from such data, it is sufficient to (a) apply a

transformation that produces a basically straight

probability plot and (b) specify the smallest and largest

possible values. This conclusion would be incorrect,

however, because inferences for Y+ are still sensitive to

the particular shape of the implied distribution of Y

between the order statistics, and once again the data cannot

distinguish between the alternatives. Two rather ad hoc

inferential techniques will be used to demonstrate this

fact.

The first method applies an ad hoc transformation to

the Yi that produces an essentially straight normal

probability plot. The method is similar to the use of power

transformations in that a transformation is found that

straightens the probability plot and then the transformation

is regarded as known; it differs from the family of power

transformations in that it fits, in some sense, n -

parameters rather than 1. The procedure fc our data is as

follows: map Yi into i = 1,...,100; map

Ymax = 5 x 106 into 4 and Ymin = 1 into -4; linearly

interpolate between these points and truncate at Ymin

and Ymax" This procedure produces essentially straight

probability plots and truncates at realistic values, yet the

resulting inferences for Y+ are quite different from the

inferences for Y+ based on the truncated

transformation in Sample 1 or the truncated

transformation in Sample 2, primarily because of the shape

of the transformation between the large order statistics and

between Y(n) and Ymax: the resultant 95% interval for

Y+ from Sample 1 is (10 x 106, 57 x 106) and from Sample

2 is (19 x 106, 108 x 106).
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Relative to this ad hoc transformation, the pA,.L

transformations smoothed the tails of the implied

distributions for Y, and, in Sample 2, thereby discounted

to some extent the fact that the two largest order

statistics were similar and substantially larger than the

other 98 values.

The second rather ad hoc method of inference for Y+

used here is the Bayesian Bootstrap (Rubin, 1981), which

places animproper Dirichlet prior distribution over all

possible values, with the result that unobserved values have

zero posterior probability and observed values are equally

likely. Although not a transformation to normality, it

implies a population distribution that perfectly reflects

the sample distribution and so is like a transformation to

normality with a straight normal probability plot. Note,

however, the extreme form of the implied distribution of

Y between the order statistics: all mass is concentrated

at the order statistics, a vastly different assumption from

the previous one which spread out the probability from

Y M to Y(i+l) according to a linear interpolation

rule. Applying the Bayesian Bootstrap to Sample 1 and

Sample 2 yields simulateu 95% intervals equal to

(4 x 106, 49 x 106) and (7 x 106, 81 X 106)
respectively. These intervals are respectable, although not

particularly sharp, even though the prior specification on

which they are based is absurd in that it leads to all

posterior mass concentrated at the observed values.

The intervals based on the truncated power transfor-
mation, the ad hoc linear interpolation transformation, and

the Bayesian Bootstrap are not extremely similar to each
other. Consequently, having a model that provides a perfect

fit to our data is not enough to draw robust inferences for
the population total, even if supplemented with prior

specification of extreme values. The inferences are still

somewhat sensitive to the shape of the population distri-

bution between the large order statistics implied by the

specified transformation.
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8. ROBUST QUESTIONS AND SAMPLES OBVIATE THE NEED FOR STRONG

PRIOR INFORMATION

Of course, simulation techniques are not needed to

estimate totals routinely in practice. Good survey

practitioners know that a simple random sample is not a good

survey design for estimating the total in a highly skewed

population. If stratification variables were available

(e.g., that categorized municipalities into villages, towns,

cities, and boroughs of New York City), in order to estimate

the population total from a sample of 100, oversampling the

large municipalities would be highly desirable (e.g., sample

all five boroughs of New York City, many cities, several

towns, and a few villages).

It should not be overlooked, however, that the simple

random samples we drew, although not ideal for estimating

the population total, are quite satisfactory for answering

many questions without imposing strong prior restrictions.

Such questions are robust for our simple random samples in

the sense that their answers are relatively stable over a

broad range of plausible models. Robustness in this sense

is a joint property of questions, data, and models that are

not contradicted by observed data.

Table 3 illustrates the relative robustness of

inference for interior percentiles from our data. Even with

extreme interior percentiles and poorer fitting transfor-

mations, the resulting inferences are usually realistic.

Better models tend to give better answers, but for questions

such as these that are robust for the data at hand, the

effect is rather weak: For these questions, prior

constraints are not extremely critical and even relatively

inflexible models can provide satisfactory answers. Of

course, other robust questions would have been the value of

the population mid-mean or some other population analogue of

a robust-statistic.

The critical issue being illustrated is that robustness

is not a property of data alone or questions alone, but

particular combinations of data, questions and families of
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TABLE 3: SIMULATED POSTERIOR DISTRIBUTIONS FOR PERCENTILES

Based on 100 Draws and Various Transformations to Normality

Population Sample I Sample 2

Percentile l -1/8 -1/4 -1/8T Lo -1/8 -1/4 41 4T

Low 1.1 1.9 2.3 1.8 1.0 1.1 1.6 1.6

Sth* 102 3rd 1.2 2.0 2.4 1.9 1.1 1.5 2.0 2.0

3.4 Nedn 2.2 2.9 3.2 2.9 1.7 2.5 3.0 3.0

97th 3.1 3.5 3.8 3.5 2.6 3.4 3.7 3.7

High 3.1 3.8 4.0 3.8 2.7 3.6 3.9 3.9

Low S.9 6.1 6.1 6.1 5.2 4.8 5.1 5.1

25th 102 3rd 6.4 6.7 6.4 6.6 5.6 S.S 5.6 5.5

.0 2  Medn  8.8 8.8 8.5 8.8 7.8 8.0 7.8 7.8
97th 10.9 10.7 10.2 10.7 10.8 10.6 10.0 9.9

Hligh 11.0 11.1 11.1 11.5 11.8 11.0 10.3 10.2

LOW 1.7 1.4 1.3 1.4 1.5 1.3 1.2 1.2

Mae *103 3rd 1.8 1.6 1.5 1.6 1.7 1.4 1.3 1.2

1.7 Ned 2.3 2.1 1.9 2.1 2.3 2.1 1.8 1.8
97th 3.0 2.7 2.4 2.7 3.6 2.8 2.4 2.4

High 3.6 2.8 2.5 2.8 4.0 3.0 2.6 2.6

LOW 4.4 4.3 3.9 4.3 4.9 4.0 3.5 3.4

3rd 4.7 4.3 3.9 4.3 4.9 4.4 3.7 3.6
75h * 10 Nd 6.2 5.7 5.2 5.7 7.1 6.0 5.3 5.25.1

97th 9.1 7.9 7.3 7.9 12.3 8.6 7.8 7.2

High 9.9 8.9 8.2 8.8 14.6 9.4 8.2 8.0

LOW 19 19 22 19 23 22 23 23

3 3rd 20 20 22 20 26 24 27 26
9"th 4 10 It n  26 29 39 29 38 40 48 4530.330.3 97th 45 64 112 64 76 61 113 86

High 47 77 133 74 128 75 127 93

T truncated at S x 106
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models. In many problems, statisticians may be able to
define the questions being studied so as to have robust

answers. We, in fact, did this by summarizing simulated
posterior distributions by percentiles rather than
moments. Often, however, the practical, important question

is inescapably nonrobust. To repeat the central theme of
this article: statisticians have an obligation to provide
the kinds of answers clients will assume are being provided
along with appraisals of the sensitivity of the inferences

to assumptions unassailable by the data; we must face the

fact that, in general, inferences rely on assumptions that
the data at hand cannot address.
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APPENDIX

1. Notation

Yi i = l,...,N are the N values of Y in the

population.
A priori I < Yi < u; e.g., (0,-), (2, 5 x 106).

Yi i = l,...,n n < N are the known values of

Y in the sample.

f(.) is the normalizing transformation, Zi = f(Yi ) .

Z= f(Yi L < Zi < U, L = f(L), U = f(u)

n
S= Z. zi/n

2 n

z= (Zi - Z)/(n - 1)
1

2. Distributions

Given parameters (v,c), we assume

1 exp[- 2 (i ) ]/kU(,a) if L < Z < U
2 /2wa 2 aLZ i i.i.dI
0 otherwise

where kU(Ip,a) = f 1 exp[- (t )2  dt
L L /2wo2

With prior distribution p(u,a) for (v,a), the posterior

distribution of (p,a) is proportional to

n Z.
p U ] if all L < Zi < U

0 otherwise

Assuming

pO,.) k kU (Pa)n/a . (Al)

-30-

' M.•



the posterior distribution of (Po) is the same as with

the usual "noninformative" prior distribution for (ro)

when L = -m and U = +0.

For most values of L,U,u and a in the simulation
U n.presented here, kL(P) 1, so that usually the choice

of the convenience prior distribution (Al) is not

substantially different from the more standard choice

proportional to o .

3. Simulation Loop

Each pass through the following three steps produces

one draw from the posterior predictive distribution of

population quantity.

Step 1 - Draw po from their posterior distribution

2 /n 2  2 2_ a variate on n - 1 df.

= Z + 0. x N(0,1)//Ii, N(0,1) a standard normal.

Step 2 - Draw unobserved Yi from posterior predictive

distribution given p = P. and a = a.

For i = n + l,...,N:

Zi = * + a* x N(0,1)

If L < Zi < U, Yi = f -(Zi); otherwise, redraw N(0,1).

Step 3 - Calculate population quantity
N

E.g. population total = Y y.

ii

population median imedian
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SUJY SWUMPLING NEW YORKX DATA FOR TWO SA LES

a - in neither sample
b - in sample I

c - in sample 2

d - in both samples

2627319a 25000a 12784a 7184b 5094a

1809578c 24960a 12500a 7166a 5046a

1698281a 23948a 12254a 6992a 5020a

1424815d 23817b 12000a 6954 5009b

532759a 23475b 11677a 6831a 5003c

318611a 23438a 11255a 6812a 4991a

221991a 23138c 11109a 6805a 4949a

216038a 22155a 11075a 6791a 4948a

190634a 21868a 11062a 6789b 4946&

172959a 21741a 10808a 6744a 4907a

129726a 21561a 10795a 6681a 4896a

102394a 21261a 10721a 6538a 4851a

100410a 20905a 10506a 6485a 4835a

81682a 20519a 10390a 6423a 4784a

76812c 20515b 10362a 6421d 4708a

76010a 20172c 10199b 6316b 4704a

75941a 20129d 10171a 6269a 4673a

70000a 19904a 9968a 6166a 4662a

67492a 19881a 9396a 6128a 4654a

65276a 19181a 9370a 6114b 4629a

65128a 19118a 9268a 6066a 4594a

51646a 18789a 9260b 6062a 4582c

50485a 18775b 9175b 5985d 4469a

50405d 18737a 9145d 5972a 4447a

46517a 18662a 9082a 5967a 4311d

46036a 18580a 9000a 5950c 4286a

45000a 18210a 8979a 5907a 4235c

44807d 18205a 8935a 5877a 4220d

41818a 17968a 8914a 5830a 4216a

38629d 17673a 8838a 5825a 4129a

38330a 17499a 8818a 5803a 4041d

35249c 17286c 8737a 5771a 4023d

34757* 17085a 8732a 5770a 4016a

34641c 16630d 8626c 5763a 4000a

34419a 16122a 8560a 5700a 3991b

34172a 15657a 8524a 5669d 3962a

33306 15478a 8480a 5507a 3944a

32900A 15387a 8477a 5494* 3933c

30979* 14757a 8381a 5460c 3909b

30448a 14261a 8318a 5417* 3906a

30204a 14225d 8317a 5410a 3878a

30138a 14011a 8255a 5326d 3872a

29564a 13922a 8152a 5256c 3855b

29260a 13917a 7765a 5222c 3852a
i 28799a 13907a 7752a 5200a 3846a

28772c 13580a 7625a 5182a 3829&

27710a 13500a 7439a 5157* 3795a

26473a 13412b 7412* 5157c 3788a

26443b 12883a 7398b 5105a 3749a

26355* 12964 7207b 5098* 3737a
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3653. 27588 2083b 1697a 1311a 1083

36224 2735a 2080d 1690d 1304a 1082a

3622a 27314 2070a 1647d 1292a 1082a

3616a 27318 2064a 1645a 12908 10794

3568a 27158 2064a 1641a 1289a 1078a

35668 2694a 2051a 1630a 1279a 1078a

3548a 2693b 2042a 1623 12764a 1076

35338a 2681 2038a 1619a 1274a 1068a

3533a 2681a 2026a 160 1267a 1066a

3487a 2622c 2025a 1586. 12653 1045a

3476a 2608a 2019A 1583a 1263 1040b

3471a 2607a 2003a 12628 1034 a

1997a 1575a 1258a

33484 257084 1996a 15748 12488 1033a

33438 2565 1979a 1550d 1248a 1033a

33308 2553a 1964a 15498 1247b 1030

3323a 2521a 1953a 1533b 12474 1027b

3320c 25214 1949a 1507a 1244b 1026a

3310a 2499a 1930a 1492& 1237& 1026a

3284a 2468a 1917a 1468a 1237a 1025

3278a 2461b 1914a 1468a 12378 1016

3262a 2461a 1906a 1465& 1236a 1009c
32508 2426a 1901a 1461a 1234a 10048
3218 2422 1887c 1460& 1231a 1004&

3193a 2410a 1882a 1448a 12284 10038

3193b 2408a 1871a 1443& 1224 988

3180a 2403d 1863b 14388 1215. 9828

3113a 2366a 18558 1431a 1215 976c

3070a 2346a 1848a 1423a 1210. 976

3060a 2314c 1838a 1416a 12010 9758

30588 2307a 18338 1416. 1180d 9724

3041a 2295 1830a 1414& 1180a 9648

3035a 2263a 17888 14058 1178 9608

2998b 2256a 1772. 1400a 1176& 9568
29540 22508 1768a 1398a 1168 9568
2940c 2240. 1767a 1390b 1166956b

29314 22134 1754a 1382d 1166b 950b

2922 2200 1752. 1379a 1156C 9508

2921b 2196a 1750a 13668 11568 9508

2915b 2185a 1749d 13659 1149d 946

2849a 2167. 1748a 1365C. 9468

2847. 2161. 1734a 13610 1146a 9358
2841 2160. 17338 13538 1146c 932c

2813a 21608 17318 13488 11268 931b

28098 2143d 1731c 13448 11148 929a

28078 2124. 17194 1337a 1109b 9258

2788a 2123a 1717a 13368 1097 925

2785a 2117a 1715a 13340 1095 9218

2772a 2108a 1714b 1325a 1090 917

2767a 2093a 1712a 1320A 1086. 9138
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907a BOO& 67 3a 525a 373a 85.

905a 800a 668a 524a 372s 67a

904a 800 663a 523. 372A 28a

903a 800a 658a 522a 369a 19a

900a 900a 655a 522c 365c

900a 800a 650a 520d 363a

900a 795a 650a 516. 363c

9004 7898 649. 511. 359a

900d 780a 648a 507b 355a

900. 779a 645a 507a 351.

900a 777. 643a 500a 350.

900a 773a 640a 500a 348a

9008 772. 627a 500a 345a

898a 770. 625c 500 3358

8988 767a 621. 497a 335a

896d 764a 618a 493a 332b

887b 755a 6168 493a 330a

886c 754a 612a 490a 328a

881as 752a 611. 488. 327d

876a 750. 602a 483a 323a

876a 750a 600a 476& 321a

876d 750a 600a 471a 321a

8758 743d 600a 470a 314b

873. 739a 600a 465a 314a

868a 732a 600a 460a 309a

868a 7324 600. 457. 303d

862a 730. 594 453a 300a

8500 729a 589. 450. 300a

850a 726a 585a 450. 300a

850a 726a 50. 450. 299a

8504 723s 578a 450a 295a

8424 723* 575a 446b 295a

837a 722a 573c 443c 295a

834a 720b 567a 439c 292a

834b 705a 567a 437a 291.

833a 701a 564. 434. 286.

828a 700d 564a 434a 277.

827a 700a 561a 425b 275.

824a 700a 556c 422. 273.

821a 700a 555. 420d 270.

820. 699b 553a 400a 2538

818a 697a 548. 400a 250d

815. 696A 543a 399b 250a

810a 696a 541a 398c 200a

803a 692a 539a 396. 180d

800 690a 538. 391a 171b

800a 689c 533a 379a 164d

800a 686 a 528c 378 a 1625

600b 677a 526a 375c 125.

800 675. 525. 373b 111

-
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ABSTRACT (Continued)

(1) Although the log normal model is often used to estimate t.-, t:Lal on
the raw scale (e.g., estimate total oil reserves assuming the logarithm of the
values are normally distributed), the log normal model may not provide
realistic inferences even when it appears to fit fairly well as judged from

I probability plots.

(2) xtending the log normal family to a larger family, such as the Box-
Cox family of power transformations, and selecting a better fitting model by
likelihood criteria or probability plots, may lead to less realistic
inferences for the population total, even when probability plots indicate an
adequate fit.

The third mes ge is more philosophical, is not easy to state precisely, but
is well-ill trated by the example.

(3) L-In general, inferences are sensitive to features of the underlying
distribution of values in the population that cannot be addressed by the
data. Consequently, for good statistical answers we need: (a) models that
all served data to dominate prior restrictions, and either (b) flexibility
in thes models to allow specification of realistic underlying features of
populati n values not adequately addressed by observed values, or (c)
questions that are robust for the type of data collected in the sense that all
relevant derlying features of population values are adequately addressed by
the observe data.
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